O3C Glass-Class: A Machine-Learning Framework for Prognostic Prediction of Ovarian Clear-Cell Carcinoma

Author:

Yokomizo Ryo123,Lopes Tiago JS1,Takashima Nagisa14,Hirose Sou3,Kawabata Ayako3,Takenaka Masataka3,Iida Yasushi3,Yanaihara Nozomu3,Yura Kei45,Sago Haruhiko2,Okamoto Aikou3,Umezawa Akihiro1

Affiliation:

1. Center for Regenerative Medicine, National Center for Child Health and Development Research Institute, Setagaya-ku, Japan

2. Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Setagaya-ku, Japan

3. Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-ku, Japan

4. Divison of Life Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Bunkyo-ku, Japan

5. Department of Life Science & Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Japan

Abstract

Ovarian clear cell carcinoma (OCCC), one of the histopathological types of ovarian cancer, has a poor prognosis when it recurs; however, it is difficult to precisely predict the risk of recurrence. Here, we analyzed pathological images of OCCC to elucidate the relationship between pathological findings and recurrence, and using machine learning, we established a classifier to predict the recurrence and several other prognosis indicators of this disease. In total, 110 patients with OCCC treated with primary surgery at a single institution were enrolled in this study. We used the deep-learning neural networks to process the whole slide images of OCCC obtained by digitally scanning the original hematoxylin and eosin-stained glass slides. The images were preprocessed and used as input to the machine learning pipeline. We fine-tuned its parameters to predict the recurrence, progression-free survival, and the overall survival days of all patients. We predicted the recurrence of OCCC with an overall accuracy of 93%, area under the receiver operating characteristic curve of 0.98, and sensitivity/specificity above 0.92 using Resnet 34. Furthermore, we predicted progression-free survival/overall survival of the patients with ~90% accuracy. In conclusion, our study demonstrates the feasibility of using a machine learning system to predict different features of OCCC samples using histopathological images as input. This novel application provides accurate prognosis information and aids in the development of personalized treatment strategies.

Publisher

SAGE Publications

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3