Affiliation:
1. Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
Abstract
Landfill leachate, a complex mixture of different solid waste compounds, is widely known to possess toxic properties. However, the fundamental molecular mechanisms engaged with landfill leachate exposure inducing cellular and sub-cellular ramifications are not well explicated. Therefore, we aim to examine the potential of leachate to impair mitochondrial machinery and its associated mechanisms in human peripheral blood lymphocytes. On assessment, the significant increase in the dichlorofluorescein (DCF) fluorescence, accumulation of 8-Oxo-2′-deoxyguanosine (8-oxo-dG), and levels of nuclear factor erythroid 2–related factor 2 (Nrf-2) strongly indicated the ability of the leachate to induce a pro-oxidant state inside the cell. The decrease in the mitochondrial membrane potential and alterations in the mitochondrial genome observed in leachate-exposed cells further suggested the disturbances in mitochondrial machinery. Moreover, these mitochondrial-associated redox imbalances were accompanied by the increased level of NF-κβ, pro-inflammatory cytokines, and DNA damage. In addition, the higher DNA fragmentation, release of nucleosomes, levels of polyadenosine diphosphate ADP-ribose polymerase (PARP), and activity of caspase-3 suggested the involvement of mitochondrial mediated apoptosis in leachate exposed cells. These observations were accompanied by the low proliferative index of the exposed cells. Conclusively, our results clearly indicate the ability of landfill leachate to disturb mitochondrial redox homeostasis, which might be a probable source for the immunotoxic consequences leading to plausible patho-physiological conditions in humans susceptible to such environmental exposures.
Funder
indian council of medical research
Subject
Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献