Approximation of dissipative systems by elastic chains: Numerical evidence

Author:

Bersani Alberto Maria1ORCID,Caressa Paolo2,dell’Isola Francesco3

Affiliation:

1. Department of Mechanical and Aerospace Engineering (DIMA), Sapienza University of Rome, Rome, Italy; Gruppo Nazionale di Fisica Matematica (GNFM-INdAM), Rome, Italy; International Research Center for the Mathematics and Mechanics of Complex Systems (M&MoCS), University of L’Aquila, L’Aquila, Italy

2. Gestore dei Servizi Energetici, Rome, Italy

3. International Research Center for the Mathematics and Mechanics of Complex Systems (M&MoCS), University of L’Aquila, L’Aquila, Italy

Abstract

An old and debated problem in Mechanics concerns the capacity of finite dimensional Lagrangian systems to describe dissipation phenomena. It is true that Helmholtz conditions determine not-always verifiable conditions establishing when a system of n second-order ordinary differential equations in normal form (nODEs) be the Lagrange equations deriving from an nth dimensional Lagrangian. However, it is also true that one could conjecture that, given nODEs it is possible to find a ( n+ k)th dimensional Lagrangian such that the evolution of suitably chosen n Lagrangian parameters allows for the approximation of the solutions of the nODEs. In fact, while it is well known that the ordinary differential equations (ODEs) usually introduced for describing some dissipation phenomena do not verify Helmholtz conditions, in this paper, we give some preliminary evidence for a positive answer to the conjecture that a dissipative system having n degrees of freedom (DOFs) can be approximated, in a finite time interval and in a suitable norm, by an extended Lagrangian system, having a greater number of DOFs. The theoretical foundation necessary to formulate such a conjecture is here laid and three different examples of extended Lagrangians are shown. Finally, we give some computational results, which encourage to deepen the study of the theoretical aspects of the problem.

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3