Effect of a thermodynamically consistent interface stress on thermal-induced nanovoid evolution in NiAl

Author:

Ghaedi Mohammad Sadegh1,Javanbakht Mahdi2ORCID

Affiliation:

1. Mechanical Engineering group, Pardis College, Isfahan University of Technology, Isfahan, Iran

2. Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

In the present work, the effect of a thermodynamically consistent inelastic interface stress on nanovoid evolution in NiAl is studied. Such interface stress is introduced for the solid–gas interface of nanovoids within the concept of the phase field approach. The Cahn–Hilliard (CH) equation using the Helmholtz free energy describes the evolution of nanovoid concentration. The interface stress changes the total stress distribution and affects the elastic stress field. Thus, due to the significant effect of the elastic energy on nanovoid dynamics, it can indirectly affect nanovoid nucleation and growth. The highly nonlinear coupled CH and elasticity equations are solved using the finite element method and the COMSOL code. The coupling appears due to the presence of the nonlinear nanovoid inelastic strain in the total strain, the presence of the nonlinear inelastic interface stress in the stress tensor and the presence of elastic energy in the Helmholtz free energy. Several examples of thermal-induced nanovoid evolutions are presented to investigate the effect of the solid–gas interface stress. The obtained results show the significant effect of the interface stress on the total stress distribution, and consequently a different distribution of thermodynamic driving force which can affect the nanostructure evolution and the deformation. Mainly, the interface stress represents a promotive effect on nanovoid growth which results in a faster nanovoid growth and a larger nanovoid concentration and region.

Funder

Isfahan University of Technology

Iran National Science Foundation

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3