Highly-conductive energetic coherent interfaces subject to in-plane degradation

Author:

Esmaeili Ali1,Javili Ali2,Steinmann Paul1

Affiliation:

1. Chair of Applied Mechanics, University of Erlangen–Nuremberg, Erlangen, Germany

2. Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA

Abstract

The presence of an interface can influence the thermo-mechanical response of a body. This influence is especially pronounced at small scales where the interface area to bulk volume ratio significantly increases. Since the thermo-mechanical properties of an interface can differ from those of the bulk, within interface continuum theory an interface is endowed with its own thermo-mechanical energetic structure. To date, the effects of interface in-plane damage on the thermo-mechanical response of a highly conductive interface have not been accounted for. Therefore in this contribution the computational aspects of thermo-mechanical solids containing highly conductive interfaces subject to in-plane degradation are studied. To this end, the equations governing a fully non-linear transient problem are given. They are solved using the finite element method. The results are illustrated through a series of three-dimensional numerical examples for various interfacial parameters. In particular a comparison is made between the results of the intact and the degraded highly conductive interface formulation.

Funder

Energie Campus Nuremberg, Cluster of Excellence “Engineering of Advanced Materials”

Publisher

SAGE Publications

Subject

Mechanics of Materials,General Materials Science,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel continuum mechanical framework for decoupled material behavior in thickness and in-plane directions;Computer Methods in Applied Mechanics and Engineering;2023-10

2. Consequences of Thermodynamical Balances;Solid Mechanics and Its Applications;2022

3. Surface plasticity: theory and computation;Computational Mechanics;2017-11-22

4. Coupled thermally general imperfect and mechanically coherent energetic interfaces subject to in-plane degradation;Journal of Mechanics of Materials and Structures;2017-02-09

5. Non-coherent energetic interfaces accounting for degradation;Computational Mechanics;2016-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3