Diallyl Disulfide Attenuates Ionizing Radiation-Induced Migration and Invasion by Suppressing Nrf2 Signaling in Non–small-Cell Lung Cancer

Author:

Xu Shuai12ORCID,Huang Hefa3,Tang Deping4,Xing Mengjie4,Zhao Qiuyue25,Li Jianping1,Si Jing2,Gan Lu2,Mao Aihong26,Zhang Hong2

Affiliation:

1. Zhaoqing Medical College, Zhaoqing, China

2. Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China

3. School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China

4. School of Biological & Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China

5. Human Resources Office, Sichuan University, Chengdu, China

6. Gansu Provincial Academic Institute for Medical Research, Lanzhou 730050, China

Abstract

Non–small-cell lung cancer (NSCLC) is the leading cause of cancer-associated deaths. Radiotherapy remains the primary treatment method for NSCLC. Despite great advances in radiotherapy techniques and modalities, recurrence and resistance still limit therapeutic success, even low-dose ionizing radiation (IR) can induce the migration and invasion. Diallyl disulfide (DADS), a bioactive component extracted from garlic, exhibits a wide spectrum of biological activities including antitumor effects. However, the effect of DADS on IR-induced migration and invasion remains unclear. The present study reported that IR significantly promoted the migration and invasion of A549 cells. Pretreatment with 40 μM DADS enhanced the radiosensitivity of A549 cells and attenuated IR-induced migration and invasion. In addition, 40 μM DADS inhibited migration-related protein matrix metalloproteinase-2 and 9 (MMP-2/9) expression and suppressed IR-aggravated EMT by the upregulation of the epithelial marker, E-cadherin, and downregulation of the mesenchymal marker, N-cadherin, in A549 cells. Furthermore, DADS was found to inhibit the activation of Nrf2 signaling. Based on our previous results that knockdown of Nrf2 by siRNA suppressed IR-induced migration and invasion in A549 cells, we speculated that DADS attenuated IR-induced migration and invasion by suppressing the activation of Nrf2 signaling in A549 cells.

Funder

The Ministry of Science and Technology National Key R&D project

The National Natural Science Foundation of China

Gansu Provincial Science and Technology Project

Innovation Fund of Colleges and Universities in Gansu Province

Zhaoqing Science and Technology Innovation Guidance Project

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3