MCNPX Estimation of Photoneutron Dose to Eye Voxel Anthropomorphic Phantom From 18 MV Linear Accelerator

Author:

Alghamdi Ali AA1ORCID

Affiliation:

1. Department of Radiological Sciences, College of Applied Medical Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

Abstract

The dose due to photoneutron contamination outside the field of irradiation can be significant when using high-energy linear accelerators. The eye is a radiation-sensitive organ, and this risk increases when high linear energy transfer neutron radiation is involved. This study aimed to provide a fast method to estimate photoneutron dose to the eye during radiotherapy. A typical high-energy linear accelerator operating at 18 MV was simulated using the Monte Carlo N-Particle Transport Code System extended version (MCNPX 2.5.0). The latest International Atomic Energy Agency photonuclear data library release was integrated into the code, accounting for the most known elements and isotopes used in typical linear accelerator construction. The photoneutron flux from a 5 × 5 cm2field size was scored at the treatment table plane and used as a new source for estimating the absorbed dose in a high-resolution eye voxel anthropomorphic phantom. In addition, common shielding media were tested to reduce the photoneutron dose to the eye using common shielding materials. Introducing a 2 cm thickness of common neutron shielding medium reduced the total dose received in the eye voxel anthropomorphic phantom by 54%. In conclusion, individualized treatment based on photoneutron dose assessment is essential to better estimate the secondary dose inside or outside the field of irradiation.

Publisher

SAGE Publications

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Reference30 articles.

1. International Atomic Energy Agency (IAEA) [Internet]. IAEA Evaluated Photonuclear Data Library (IAEA/PD-2019). https://www-nds.iaea.org/photonuclear/ Cited January 18, 2022.

2. Feasibility study of using PET to determine nitrogen concentration after high energy photon irradiation

3. Current status of disposal and measurement analysis of radioactive components in linear accelerators in Korea

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3