The Use of Survival Dose-Rate Dependencies as Theoretical Discrimination Criteria for In-Silico Dynamic Radiobiological Models

Author:

Mingo Barba Sergio123ORCID,Lobo-Cerna Fernando45,Krawczyk Przemek M.45,Lattuada Marco2,Füchslin Rudolf M.16,Petri-Fink Alke23,Scheidegger Stephan1

Affiliation:

1. School of Engineering, Zürich University of Applied Sciences (ZHAW), Winterthur, Switzerland

2. Chemistry Department, University of Fribourg, Fribourg, Switzerland

3. Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland

4. Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands

5. Cancer Center Amsterdam, Amsterdam, The Netherlands

6. European Centre for Living Technology, Venice, Italy

Abstract

Introduction Cell repair dynamics are crucial in optimizing anti-cancer therapies. Various assays (eg, comet assay and γ-H2AX) assess post-radiation repair kinetics, but interpreting such data is challenging and model-based data analyses are required. However, ambiguities in parameter calibration remain an unsolved challenge. To address this, we propose combining survival dose-rate effects with computer simulations to gain knowledge about repair kinetics. Methods After a literature review, theoretical discriminators based on common fractionation/dose-rate-related effects were defined to discard unrealistic model dynamics. The Multi-Hit Repair (MHR) model was calibrated with canine osteosarcoma Abrams cell line data to study the discriminators’ efficacy in scenarios with limited survival data. Additionally, survival dose-rate-dependent data from the human SiHa cervical cancer cell line were used to illustrate the survival behavior at diverse dose-rates and the capability of the MHR to model these data. Results SiHa data confirmed the validity of the proposed discriminators. The discriminators filtered 99% of parameter sets, improving the calibration of Abrams cells data. Furthermore, results from both cell lines may hint universal aspects of cellular repair. Conclusions Dose-rate theoretical discrimination criteria are an effective method to understand repair kinetics and improve radiobiological model calibration. Moreover, this methodology may be used to analyze diverse biological data using dynamic models in-silico.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3