Curing kinetics study of chemically modified pineapple leaf fiber/epoxy composite

Author:

Shih Yeng-Fong1,Ou Ting-Yuan1,Chen Zheng-Ting1,Chang Chun-Wei1,Lau Edwin M.2ORCID

Affiliation:

1. Department of Applied Chemistry, Chaoyang University of Technology, Taichung, Taiwan

2. Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung, Taiwan

Abstract

Agricultural by-products have long hinder farmers, and subsequently, the food supply chain. Making use of their natural by-products will both reduce waste and increase industrial production. In particular, pineapple leaf fibers (PALF) can be extensively studied. Here, the curing kinetics of chemically modified PALF/epoxy resin crosslinked by an anhydride hardener was investigated by non-isothermal and isothermal methods with the differential scanning calorimetry technique. In this study, the Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods, as well as Kamal's model, were employed to analyze the curing behavior of epoxy in non-isothermal and isothermal processes, respectively. The highest activation energies for pure epoxy and PALF/epoxy composite calculated differ when using the methods. Additionally, a decreasing trend in the activation energy values during the late stages of epoxy curing was observed. The results from Kamal's model indicate that the k1 values of the PALF/epoxy composite are only greater than those of pure epoxy at 100°C and 110°C. However, all the k2 values of PALF/epoxy are greater than those of pure epoxy. Additionally, the m value of the PALF/epoxy composite is lower than that of pure epoxy only at 100°C, while the n and m+n values of the PALF/epoxy composite are all greater than those of pure epoxy. Moreover, the results reveal that the Cure Index of the PALF/epoxy composite was larger than ΔH* and smaller than ΔT*. With PALF, it was found that the epoxy resin’s curing rate was increased and the activation energy was reduced. Meanwhile, the degree of crosslinks was less than that of the virgin resin. It is speculated that the hydroxyl groups on the plant fibers and the amine groups on the coupling agent-modified fibers can promote the cross-linking reaction. However, the curing reaction of the composite is affected by steric obstacles and high viscosity resulting from the addition of PALFs.

Publisher

SAGE Publications

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3