Targeted inhibition of β-catenin alleviates airway inflammation and remodeling in asthma via modulating the profibrotic and anti-inflammatory actions of transforming growth factor-β1

Author:

Huo Rujie1ORCID,Tian Xinli2,Chang Qin3,Liu Dai1,Wang Chen4,Bai Jingcui1,Wang Runjuan5,Zheng Guoping6,Tian Xinrui7

Affiliation:

1. Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China

2. Cardiopulmonary Center, General Hospital of PLA Army, Beijing, China

3. Department of Respiratory Medicine, Linfen Central Hospital, Linfen, China

4. Pathology Department, Second Hospital of Shanxi Medical University, Taiyuan, China

5. Emergency Department, Central Hospital of China Railway No.3 Engineering Group, Taiyuan, China

6. Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW, Australia

7. Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, 382 Wuyi Road, Xinghualing Area, Taiyuan, China

Abstract

Background: TGF-β1 is a key cytokine involved in both airway inflammation and airway remodeling in asthma because of its anti-inflammatory and profibrotic effect. In our previous study, we found that knockdown of cytosolic β-catenin alleviated the profibrogenic effect of TGF-β1 without influencing its anti-inflammatory effect. However, the exact role of targeting β-catenin in asthma is not yet fully demonstrated. In the present study, we investigated the effect and mechanism of targeting β-catenin in OVA-challenged asthmatic rats with airway inflammation and remodeling features. Methods: We integrated experimental asthma model and asthma related cell model to explore the effect of targeting β-catenin on airway inflammation and remodeling of asthma. Results: Blocking β-catenin with ICG001, a small molecule inhibitor of β-catenin/TCF via binding to cAMP-response elementbinding protein, attenuated airway inflammation by increasing levels of anti-inflammation cytokines IL-10, IL-35 and decreasing levels of T helper (Th)2 cells and Th17 cytokine. Suppressing β-catenin by ICG001 inhibited airway remodeling via reducing the level of TGF-β1 and the expressions of Snail, MMP-7, MMP-9 and, up-regulating expression of E-cadherin, down-regulating expressions of α-SMA and Fn. Inhibition of β-catenin with ICG001 suppressed TGF-β1 induced proliferation and activation of CCC-REPF-1, blocked TGF-β1 induced epithelial–mesenchymal transition (EMT) of RLE-6TN. Conclusion: Blockade of β-catenin/TCF not only prevents TGF-β1 induced EMT and profibrogenic effects involved in pathological remodeling of airway, but also alleviates airway inflammation in asthma by balancing pro-inflammatory and anti-inflammatory cytokine. In conclusion, targeting β-catenin specifically via inhibition of β-catenin/TCF might be a new therapeutic strategy for asthma. The reviews of this paper are available via the supplemental material section.

Publisher

SAGE Publications

Subject

Pharmacology (medical),Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3