Validation of digital microscopy: Review of validation methods and sources of bias

Author:

Bertram Christof A.12ORCID,Stathonikos Nikolas3ORCID,Donovan Taryn A.4ORCID,Bartel Alexander2ORCID,Fuchs-Baumgartinger Andrea1,Lipnik Karoline1,van Diest Paul J.3,Bonsembiante Federico5ORCID,Klopfleisch Robert2ORCID

Affiliation:

1. University of Veterinary Medicine, Vienna, Austria

2. Freie Universität Berlin, Berlin, Germany

3. University Medical Centre Utrecht, Utrecht, the Netherlands

4. Animal Medical Center, New York, NY, USA

5. University of Padova, Legnaro, Padua, Italy

Abstract

Digital microscopy (DM) is increasingly replacing traditional light microscopy (LM) for performing routine diagnostic and research work in human and veterinary pathology. The DM workflow encompasses specimen preparation, whole-slide image acquisition, slide retrieval, and the workstation, each of which has the potential (depending on the technical parameters) to introduce limitations and artifacts into microscopic examination by pathologists. Performing validation studies according to guidelines established in human pathology ensures that the best-practice approaches for patient care are not deteriorated by implementing DM. Whereas current publications on validation studies suggest an overall high reliability of DM, each laboratory is encouraged to perform an individual validation study to ensure that the DM workflow performs as expected in the respective clinical or research environment. With the exception of validation guidelines developed by the College of American Pathologists in 2013 and its update in 2021, there is no current review of the application of methods fundamental to validation. We highlight that there is high methodological variation between published validation studies, each having advantages and limitations. The diagnostic concordance rate between DM and LM is the most relevant outcome measure, which is influenced (regardless of the viewing modality used) by different sources of bias including complexity of the cases examined, diagnostic experience of the study pathologists, and case recall. Here, we review 3 general study designs used for previous publications on DM validation as well as different approaches for avoiding bias.

Funder

Dres. Jutta & Georg Bruns Stiftung für innovative Veterinärmedizin

Publisher

SAGE Publications

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3