Loss of PHLDA1 has a protective role in OGD/R-injured neurons via regulation of the GSK-3β/Nrf2 pathway

Author:

Yang F1ORCID,Chen R2

Affiliation:

1. Department of Pharmacy, Xianyang Hospital of Yan’an University, Xianyang, Shaanxi, China

2. Yizhixin Biotechnology Institute, Xi’an, Shaanxi, China

Abstract

Pleckstrin homology-like domain, family A, member 1 (PHLDA1) is a multifunctional protein that plays a role in diverse pathological conditions. However, whether PHLDA1 participates in cerebral ischemia-reperfusion injury has not been reported. The goals of the present work were to assess the possible relationship between PHLDA1 and cerebral ischemia-reperfusion injury. Hippocampal neurons were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate cerebral ischemia-reperfusion injury in vitro, which led to significant increases in the expression of PHLDA1. Cellular functional studies showed that the knockdown of PHLDA1 produced a protective role in OGD/R-injured neurons via the down-regulation of neuronal apoptosis, oxidative stress and proinflammatory cytokine release. On the contrary, the overexpression of PHLDA1 rendered neurons more vulnerable to OGD/R injury. In-depth research revealed that the inhibition of PHLDA1 resulted in the enhancement of nuclear factor erythroid 2 like 2 (Nrf2) signaling in OGD/R-injured neurons. The reactivation of glycogen synthase kinase 3β (GSK-3β) abolished the PHLDA1-inhibition-mediated activation of Nrf2 signaling. Moreover, the restraint of Nrf2 signaling diminished the PHLDA1-knockdown-induced neuroprotective effects in OGD/R-injured neurons. In summary, the data of our work show that the loss of PHLDA1 protects against OGD/R injury via potentiating Nrf2 signaling via the regulation of GSK-3β. This work underscores a potential role of PHLDA1 in cerebral ischemia-reperfusion injury and proposes PHLDA1 as an attractive target for the development of neuroprotective therapy.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3