Long-term dietary administration of diethyl phthalate triggers loss of insulin sensitivity in two key insulin target tissues of mice

Author:

Mondal S1,Mukherjee S1ORCID

Affiliation:

1. Endocrinology and Metabolism Laboratory, Department of Zoology, Visva-Bharati (A Central University), Santiniketan, West Bengal, India

Abstract

Over the past years, a growing body of work has linked numerous pervasive environmental chemicals with a multitude of adverse reproductive, developmental, behavioral, and metabolic changes in humans and animal models. Plasticizers include a wide variety of phthalate esters that are extensively used in a host of personal day care and cosmetic products. Many population-based studies have indicated a close association between diethyl phthalate (DEP) and diabetes albeit the mechanisms remain much unexplored. Presently, we report that long-term dietary administration of DEP to adult male Swiss albino mice at two different concentrations mirroring the recommended tolerable doses, severely impaired insulin signaling in hepatocytes and adipocytes. This was concomitant with sustained oxidative stress from the overactivation of NADPH oxidase 2, a major intracellular source of reactive oxygen species, in both the cell types. The present study provides evidences of the onset of insulin resistance in mice after chronic exposure to DEP in diet even at lower levels. This, in turn, can have serious pathological consequences with ultimate manifestations of type 2 diabetes and metabolic syndrome (MetS). Thus, by disrupting the central metabolic function of liver and adipose tissue, the key insulin target tissues, daily exposure to phthalates in plastics can potentially contribute to the alarming prevalence of MetS in recent times.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3