Assessing the potential value and mechanism of Ginkgo biloba L. On coal-fired arsenic-induced skin damage: In vitro and human evidence

Author:

Zeng Qibing1,Wei Shaofeng1,Sun Baofei1,Zhang Aihua1ORCID

Affiliation:

1. The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Helath, Guizhou Medical University, Guiyang, China

Abstract

Exposure through arsenic-contaminated air and food caused by the burning of coal is a major environmental public health concern in Guizhou Province of China. Previous studies have shown that immunological dysfunction is involved in the pathogenesis and carcinogenesis of arsenic; however, knowledge regarding effective prevention measures have not been fully examined. The effect of Ginkgo biloba extract (EGb761) on arsenic-induced skin damage of human immortalized keratinocyte cells (HaCaT) was first evaluated in this study. The results showed that 200 μg/mL EGb761 can reduce the expression of miR-155-5p, and the indicators reflecting arsenic-induced skin damage (Krt1, Krt6c and Krt10) in arsenic-exposed cells ( P < 0.05), the expression levels of NF-AT1; the indicators reflecting arsenic-induced immunological dysfunction (IL-2, IFN-γ) in cells; and the levels of secreted IL-2 and IFN-γ in cell supernatants were significantly increased ( P < 0.05). Further randomized controlled double-blind experiments showed that compared to the placebo control group, the expression level of miR-155-5p in the plasma of the Ginkgo biloba intervention group, the indicators in the serum reflecting arsenic-induced skin damage (Krt1, Krt6c, and Krt10) and the epithelial-mesenchymal transformation (EMT) vimentin were significantly reduced ( P < 0.05), but the levels of NF-AT1 and the indicators reflecting arsenic-induced immunological dysfunction (IL-2, IFN-γ) and EMT (E-cadherin) in serum were significantly increased ( P < 0.05). Our study provides some limited evidence that Ginkgo biloba L. can increase the expression of NF-AT1 by downregulating the level of miR-155-5p, alleviating immunological dysfunction, and decreasing the expression of EMT biomarkers, thus indirectly improving arsenic-induced skin damage.

Funder

the National Natural Science Foundations of China

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3