Paracrine factors of human mesenchymal stem cells increase wound closure and reduce reactive oxygen species production in a traumatic brain injury in vitro model

Author:

Torrente D1,Avila MF1,Cabezas R1,Morales L1,Gonzalez J1,Samudio I1,Barreto GE1

Affiliation:

1. Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá DC, Colombia

Abstract

Traumatic brain injury (TBI) consists of a primary and a secondary insult characterized by a biochemical cascade that plays a crucial role in cell death in the brain. Despite the major improvements in the acute care of head injury victims, no effective strategies exist for preventing the secondary injury cascade. This lack of success might be due to that most treatments are aimed at targeting neuronal population, even if studies show that astrocytes play a key role after a brain damage. In this work, we propose a new model of in vitro traumatic brain-like injury and use paracrine factors released by human mesenchymal stem cells (hMSCs) as a neuroprotective strategy. Our results demonstrate that hMSC-conditioned medium increased wound closure and proliferation at 12 h and reduced superoxide production to control conditions. This was accompanied by changes in cell morphology and polarity index, as both parameters reflect the ability of cells to migrate toward the wound. These findings indicate that hMSC is an important regulator of oxidative stress production, enhances cells migration, and shall be considered as a useful neuroprotective approach for brain recovery following injury.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Toxicology,General Medicine

Reference56 articles.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3