Coordinated control of longitudinal and lateral movements considering dynamics for distributed drive electric vehicle platoon on curved roads

Author:

Fang Ting1ORCID,Wang Qidong12,Zhao Linfeng1,Chen Wuwei1ORCID,Yan Mingyue1,Cai Bixin1

Affiliation:

1. School of Automotive and Transportation Engineering, Hefei University of Technology, Hefei, China

2. School of Mechanical Engineering, Hefei University, Hefei, China

Abstract

The control goal of the vehicle platoon is to maintain the same speed and desired distance. Most current studies are based on simplified vehicle models, and the leader’s state is also rarely considered. However, under complex working conditions, such as low adhesion or curves, the lateral stability of the platoon will be difficult to guarantee, and tracking errors of desired speed and spacing may further increase. To solve the above problems, a new hierarchical coordinated control strategy is proposed. Taking distributed drive electric vehicles (DDEVs) as research objects, the upper control level establishes a stability situation assessment model according to the vehicle’s dynamic characteristics. At the medium control level, variable weight model predictive control (MPC) coordinates conflicts between longitudinal tracking and lateral stability. A correction term is also introduced to revise the prediction model. At the same time, the weight of different control objectives of the leader and following vehicle was adjusted, respectively. Torque distribution is carried out at the lower level controller. Finally, the control strategy is tested on a hardware-in-the-loop (HIL) platform. The results show that the proposed control strategy can ensure lateral stability while improving the tracking performance of the vehicle platoon.

Funder

National Natural Science Foundation of China

National Key Research and Development Plan Project

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3