Simultaneous Damping and Frequency Control in AC Microgrid Using Coordinated Control Considering Time Delay and Noise

Author:

Arora Amit1ORCID,Bhadu Mahendra1,Kumar Arvind1

Affiliation:

1. Department of Electrical Engineering, Engineering College Bikaner, India

Abstract

The incorporation of converter-based generating sources in utility-scale microgrids causes frequency instability and low-frequency oscillations (LFOs), which is also a reason for degeneration in system stability. Damping frequency control is an essential part of alternating current (AC) microgrid system operation and control. Sudden changes in load, variations in renewable power outputs due to changes in solar insolation or wind speed, and so on factors cause the system frequency to deviate from the nominal value. Therefore, the role of a frequency controller is to maintain the dynamic stability in an AC microgrid by retaining the system frequency at the nominal value. Again, AC microgrids with high renewable power penetration face even more difficulty in maintaining frequency stability because of their poor inertial response. The research presented here proposes a novel approach for grid-connected AC microgrid oscillation damping and frequency control that simultaneously takes into consideration time delay and noise. To improve the frequency response and dampen LFOs by providing the voltage and frequency within the specified range, a coordinated technique-based control approach is adopted. In the developed hybrid control, the frequency controller relies on active power modulation, while the power oscillation damping controller is dependent on reactive power modulation. To improve stability and reduce communication consequences such as noise and signal latency (time delay), the developed power oscillation damping controller and frequency controller are coordinated along with the robust linear quadratic Gaussian controller. The comparative investigation of the effectiveness of the coordinated control technique is employed in the software of MATLAB/Simulink for grid-connected AC microgrid. The outcome of the simulation illustrates the superior effectiveness of the suggested controller over the traditional droop controller for huge power flows under disturbance with various operating conditions, under/overfrequency events, time delay, and noise. This grid encouragement capability for AC microgrids is anticipated to lead to novel possibilities for generating revenue.

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3