Study on novel signal processing and simultaneous-fault diagnostic method for wind turbine

Author:

Wang Xian-Bo1ORCID,Miao Pu2,Zhang Kun3,Zhang Xiaoyuan1,Wang Jun1

Affiliation:

1. College of Electrical Engineering, Henan University of Technology, China

2. School of Electronic and Information Engineering, QingDao University, China

3. Department of Electromechanical Engineering, University of Macau, China

Abstract

High-precision fault diagnosis is important for the widely installed complex industrial product, the wind turbine. However, intelligent monitoring is difficult due to the fuzzy boundaries and individual different variations of the unseen single or simultaneous-fault of such intricate equipment. To solve this problem, this study proposes an ensemble fault diagnostic framework for simultaneous and coupling failure. First, this paper develops novel signal processing methods for effective feature learning and mapping from the non-stationary and nonlinear raw vibrational signals. The adapted variational mode decomposition is introduced based on the particle swarm optimization that applies the minimum mean envelope entropy to optimize the parameters settings. Second, the novel ensemble extreme learning machine-based network is proposed to isolate the faults that applies one extreme learning machine network to count the number of fault scenarios, and the other one to identify the specific single or simultaneous-fault labels. With this scheme, the self-adaptive ensemble extreme learning machine-based fault diagnostic framework is more accurate and faster than the prevailing probabilistic classifier-based methods, as the proposed method does not rely on empirically specified decision-making threshold and generates all the candidate fault labels at the same time. Finally, this study builds the test platform and compares the overall results with the existing feature analysis methods and classifiers. The experimental results verify that the proposed framework detects both single and simultaneous-fault accurately and quickly.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Instrumentation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Iterative Laplace of Gaussian filter and improved Teager energy operator for bearing fault detection in gearboxes;Measurement Science and Technology;2024-06-28

2. A literature review of fault diagnosis based on ensemble learning;Engineering Applications of Artificial Intelligence;2024-01

3. Fault Diagnosis in Wind Energy Management System using Extreme Learning Machine: A Systematic Review;Journal of Physics: Conference Series;2022-08-01

4. Prognostics and Health Management of Wind Energy Infrastructure Systems;ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg;2022-01-10

5. Floating offshore wind turbine fault diagnosis using stacked denoising autoencoder with temporal information;Transactions of the Institute of Measurement and Control;2021-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3