HMM-based dissipative filtering for Markov jump neural networks under event-triggered scheme and stochastic cyberattacks

Author:

Zhao Yong1ORCID,Wan Xinlian1,Zhang Weihai2

Affiliation:

1. College of Mathematics and Systems Science, Shandong University of Science and Technology, China

2. College of Electrical Engineering and Automation, Shandong University of Science and Technology, China

Abstract

This paper investigates the design of an asynchronous dissipative filter for a class of discrete-time Markov jump neural networks (MJNNs) under event-triggered schemes (ETS) and stochastic cyberattacks. Since the mode information of the system mode is not easily acquired by the filter, the hidden Markov model (HMM) is employed to depict such kinds of asynchronous characteristics. The transmitted data meets specific event-triggering conditions, which can alleviate the communication burden. Owing to network vulnerabilities, two kinds of cyberattacks, deception attacks (DAs) and denial-of-service (DoS) attacks, are considered in the transmission channel. By exploring the ETS method and the stochastic cyberattacks property, a hidden networked MJNNs model with network-induced delay and hybrid cyberattacks is proposed for the first time. Sufficient conditions are derived to ensure that the resulted hidden filtering error system with hybrid cyberattacks is finite-time bounded (FTB). Based on this, a criterion for finite-time exponential dissipativity (FTED) is established and an event-triggered and asynchronous secure filter is designed. Finally, two numerical examples are presented to verify the validity of the proposed filter design scheme.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation, China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3