Polymer-coated cardiopulmonary bypass circuit attenuates upregulation of both proteases/protease inhibitors and platelet degranulation in pigs

Author:

Suehiro Shoichi1,Shimizu Kouji1,Imai Kensuke1,Niii Atsushi2,Akeho Kazuhiro2,Nakata Hayato2,Yamaguchi Akane1,Matsumoto Ken-ichi3,Oda Teiji1

Affiliation:

1. Division of Thoracic and Cardiovascular Surgery, Department of Surgery, Shimane University Faculty of Medicine, Izumo, Japan

2. Department of Medical Engineering, Shimane University Hospital, Izumo, Japan

3. Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research, Shimane University, Izumo, Japan

Abstract

Introduction: Interaction of blood with a cardiopulmonary bypass (CPB) circuit activates the coagulation-fibrinolysis, complement and kinin-kallikrein systems that are mainly supported by proteases and their inhibitors. Methods: Biocompatibility of a new polymer-coated (SEC-coated) CPB circuit was globally evaluated and compared with that of a non-coated CPB circuit by quantitative proteomics, using isobaric tags for relative and absolute quantification labeling tandem mass spectrometry. Plasma samples were taken three times (5 min after initiation of CPB, just before declamping and just before termination of CPB) in 12 pigs undergoing 120 min of CPB with the SEC-coated CPB circuit or a non-coated CPB circuit (n = 6, respectively). Results: Identified were 224 proteins having high protein confidence (>99%) and false discovery rate (FDR) <5%. Among these proteins, there were 25 significantly upregulated proteins in the non-coated CPB group compared to those in the SEC-coated CPB group. Dominant protein functions were platelet degranulation, serine-type (cysteine-type) endopeptidase inhibitor activity and serine-type endopeptidase activity in the 25 proteins. Bioinformatics analysis similarly revealed upregulation of proteins belonging to platelet degranulation and negative regulation of endopeptidase activity in the non-coated CPB group; these upregulations were effectively attenuated in the SEC-coated CPB group. Conclusion: The new polymer (SEC)-coated CPB circuit effectively attenuated upregulation of proteins compared to the non-coated CPB circuit. These proteins were associated with both proteases/protease inhibitors and platelet degranulation.

Publisher

SAGE Publications

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Safety Research,Radiology Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3