Perceptual Evaluation of Binaural MVDR-Based Algorithms to Preserve the Interaural Coherence of Diffuse Noise Fields

Author:

Gößling Nico1ORCID,Marquardt Daniel2,Doclo Simon1

Affiliation:

1. Department of Medical Physics and Acoustics and Cluster of Excellence Hearing4all, University of Oldenburg

2. Starkey Hearing Technologies, Eden Prairie, Minnesota, United States

Abstract

Besides improving speech intelligibility in background noise, another important objective of noise reduction algorithms for binaural hearing devices is preserving the spatial impression for the listener. In this study, we evaluate the performance of several recently proposed noise reduction algorithms based on the binaural minimum-variance-distortionless-response (MVDR) beamformer, which trade-off between noise reduction performance and preservation of the interaural coherence (IC) for diffuse noise fields. Aiming at a perceptually optimized result, this trade-off is determined based on the IC discrimination ability of the human auditory system. The algorithms are evaluated with normal-hearing participants for an anechoic scenario and a reverberant cafeteria scenario, in terms of both speech intelligibility using a matrix sentence test and spatial quality using a MUlti Stimulus test with Hidden Reference and Anchor (MUSHRA). The results show that all the binaural noise reduction algorithms are able to improve speech intelligibility compared with the unprocessed microphone signals, where partially preserving the IC of the diffuse noise field leads to a significant improvement in perceived spatial quality compared with the binaural MVDR beamformer while hardly affecting speech intelligibility.

Funder

Deutsche Forschungsgemeinschaft

Niedersächsisches Ministerium für Wissenschaft und Kultur

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3