Improving Auditory Filter Estimation by Incorporating Absolute Threshold and a Level-dependent Internal Noise

Author:

Irino Toshio1ORCID,Yokota Kenji1,Patterson Roy D.2

Affiliation:

1. Faculty of Systems Engineering, Wakayama University, Japan

2. Department of Physiology, Development and Neuroscience, University of Cambridge, UK

Abstract

Auditory filter (AF) shape has traditionally been estimated with a combination of a notched-noise (NN) masking experiment and a power spectrum model (PSM) of masking. However, there are several challenges that remain in both the simultaneous and forward masking paradigms. We hypothesized that AF shape estimation would be improved if absolute threshold (AT) and a level-dependent internal noise were explicitly represented in the PSM. To document the interaction between NN threshold and AT in normal hearing (NH) listeners, a large set of NN thresholds was measured at four center frequencies (500, 1000, 2000, and 4000 Hz) with the emphasis on low-level maskers. The proposed PSM, consisting of the compressive gammachirp (cGC) filter and three nonfilter parameters, allowed AF estimation over a wide range of frequencies and levels with fewer coefficients and less error than previous models. The results also provided new insights into the nonfilter parameters. The detector signal-to-noise ratio ([Formula: see text]) was found to be constant across signal frequencies, suggesting that no frequency dependence hypothesis is required in the postfiltering process. The ANSI standard “Hearing Level-0dB” function, i.e., AT of NH listeners, could be applied to the frequency distribution of the noise floor for the best AF estimation. The introduction of a level-dependent internal noise could mitigate the nonlinear effects that occur in the simultaneous NN masking paradigm. The new PSM improves the applicability of the model, particularly when the sound pressure level of the NN threshold is close to AT.

Funder

Japan Society for the Promotion of Science

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3