Electrically Evoked Auditory Brainstem Responses in Children Fitted with Hearing Aids Prior to Cochlear Implantation

Author:

Chen Li12,Zhang Jun-Ge12,Zhu Han-Yu1,Hou Xiao-Yan1,Tang Zheng-Quan3,Sun Jing-Wu1,Sun Jia-Qiang1,Guo Xiao-Tao14ORCID

Affiliation:

1. Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China

2. Wannan Medical College, Anhui Provincial Hospital, Hefei, Anhui, 230001, China

3. School of Life Sciences, Anhui University, Hefei, Anhui, 230601, China

4. CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China

Abstract

This study investigates the effect of hearing aid use on the peripheral auditory pathways in children with sensorineural hearing loss prior to cochlear implantation, as revealed by the electrically evoked auditory brainstem response (EABR). Forty children with hearing aids were recruited. Half of them had normal inner ear structures and the other half had inner ear malformations (IEMs). The EABR was evoked by electrically stimulating the round window niche (RWN) and round window membrane (RWM) during the cochlear implantation operation. The onset age of hearing aid use was significantly correlated with the peak latencies, but not amplitudes, of the wave III (eIII) and wave V (eV). Higher EABR thresholds were found for RWN stimulation than for RWM stimulation and in the children with IEMs than in those without IEMs. Our study provides neurophysiological evidence that earlier use of hearing aids may ameliorate physiological functions of the peripheral auditory pathway in children with and without IEMs. The EABR evoked by the electrical stimulation at RWM is more sensitive compared with that at RWN for evaluating functions of the auditory conduction pathway.

Funder

Natural Science Foundation of Anhui Province

National Natural Science Foundation of China

The Fundamental Research Funds for the Central Universities

Open research Fund of CAS Key Laboratory of Brain Function and Diseases

Publisher

SAGE Publications

Subject

Speech and Hearing,Otorhinolaryngology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3