Research progress of thermoregulating textiles based on spinning of organic phase change fiber of energy storage

Author:

Xiao Xin12ORCID,Feng Ze1,Jia Hongwei1,Wang Yunfeng2,Chen Qing3,Lv Fengyong4

Affiliation:

1. College of Environmental Science and Engineering, Donghua University, China

2. Yunnan Provincial Rural Energy Engineering Key Laboratory, Yunnan Normal University, China

3. Shanghai International Fashion Innovation Center, Donghua University, China

4. College of Urban Construction and Safety Engineering, Shanghai Institute of Technology, China

Abstract

Thermal energy storage can contribute to the reduction of carbon emissions, motivating the applications in aerospace, construction, textiles and so on. Phase change materials have been investigated extensively in the field of high-performance intelligent thermoregulating fabrics for energy storage. Advances toward fibers or fabrics for thermo regulation are developed, but leakage of phase change medium is a concern when directly coated or filled with fibers or fabrics. Thus, different spinning methods have appeared to integrate phase change materials into copolymer fiber to prepare phase change fiber. The present review has been divided into three parts and first deals with spinning technologies such as wet spinning, melt spinning, electrostatic spinning, and centrifugal spinning with the thermal properties and mechanical properties of phase change fiber. Among them, the phase change medium loading in the phase change fiber with wet spinning is up to 70 wt.%, while the fiber strength is below 2.12 cN/dtex. In contrast, phase change fiber prepared by melt spinning achieves a breaking strength of up to 37.31 cN/dtex, but with an enthalpy of only 8.48 kJ/kg. Considering electrostatic spinning, not only enthalpies are satisfactory but the fiber diameters are mostly below 1000 nm, matching with the softness requirement for fabric. Moreover, centrifugal spinning enables efficient production of phase change fiber of large enthalpy by controlling spinning parameters such as rotational speed and spinning fluid concentration. The second part reports that the thermal management effects of different intelligent thermo regulating fabrics are evaluated by designed experiments or simulations to investigate further the more comfortable conditions of thermal comfort of humans. Simulation and experimental results show that the energy storage of smart fabrics extends the time duration of thermal comfort by more than 300 s. In the last part, multifunctional intelligent thermoregulating fabrics are systematically discussed, such as light and heat response, ultraviolet resistance, air permeability, and water resistance. Practical applications of phase change fibers and intelligent thermoregulating fabrics should be further studied and broadened in the future.

Funder

Fundamental Research Funds for the Central Universities

Science and Technology Commission of Shanghai Municipality

Yunnan Provincial Rural Energy Engineering Key Laboratory

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3