Saliency-dependent adaptive remeshing for cloth simulation

Author:

Shi Min1,Ming Hou1ORCID,Liu Yaning1,Mao Tianlu2,Zhu Dengming2,Wang Zhaoqi2,Zhang Fan3

Affiliation:

1. North China Electric Power University, Beijing, China

2. Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

3. Beijing Institute of Fashion Technology, Beijing, China

Abstract

We propose a method for simulating cloth with meshes dynamically refined according to visual saliency. It is a common belief that it is preferable for the regions of an image being viewed to have more details than others. For a certain scene, a low-resolution cloth mesh is first simulated and rendered into images in the preview stage. Pixel saliency values of these images are predicted according to a pre-trained saliency prediction model. These pixel saliencies are then translated to a vertex saliency of the corresponding meshes. Vertex saliency, together with camera positions and a number of geometric features of surfaces, guides the dynamic remeshing for simulation in the production stage. To build the saliency prediction model, images extracted from various videos of clothing scenes were used as training data. Participants were asked to watch these videos and their eye motion was tracked. A saliency map is generated from the eye motion data for each extracted video frame image. Image feature vectors and map labels are sent to a Support Vector Machine for training to obtain a saliency prediction model. Our method greatly reduces the number of vertices and faces in the clothing model, and generates a speed-up of more than 3 × for scenes with single dressed character, while for multi-character scenes the speed-up is increased to more than 5×. The proposed technique can work together with view-dependency for offline simulation.

Funder

General Program of National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Motion-Inspired Real-Time Garment Synthesis with Temporal-Consistency;Journal of Computer Science and Technology;2023-11-30

2. Review of cloth modeling and simulation for virtual fitting;Textile Research Journal;2022-11-03

3. Imagery Analysis and Virtual Visualization of Chinese Folk Song Hua'er;2022 3rd International Conference on Education, Knowledge and Information Management (ICEKIM);2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3