A novel air-assisted rotor spinning technique for ultra-stable antibacterial nanofiber/cotton hybrid yarn

Author:

Li Yinghui1,Wang Liming1ORCID,Ji Dongxiao1,Qin Xiaohong1ORCID,Yu Jianyong2

Affiliation:

1. Key Laboratory of Textile Science and Technology, College of Textiles, Donghua University, China

2. Innovation Center for Textile Science and Technology, Donghua University, China

Abstract

Antibacterial textiles have attracted much attention in recent years. The stability of the antibacterial effect is one of the most important properties of antibacterial textiles. Integrating antibacterial nanofibers into cotton yarn is a green and efficient method to produce antibacterial textiles. However, due to the loose yarn structure of traditional rotor spinning, the functional nanofibers are easily detached from the blended yarns, resulting in reduced antibacterial effect. Herein, we modified the rotor spinning unit by adding an extra air supply channel for tighter yarn structure. The airflow field of the modified rotor spinning unit was simulated using computational fluid dynamics to determine the best setting angle of the extra air supply channel. Then, the antibacterial blended yarn was produced by trans-scale electrospinning and followed by air-assisted rotor spinning. At the same yarn density, the mean diameter of modified rotor spinning hybrid yarn was smaller than that of conventional rotor spinning hybrid yarn, demonstrating that the structure of modified rotor spinning hybrid yarn was tighter. The overall qualities of modified rotor spinning hybrid yarn were much better than those of conventional rotor spinning hybrid yarn. The fluorescent tracer technique was carried out to show that more nanofibers can be preserved in modified rotor spinning hybrid yarn than in conventional rotor spinning hybrid yarn, especially after 10 washing cycles. The antibacterial properties of modified rotor spinning hybrid yarn-based fabric against Escherichia coli and Staphylococcus aureus can reach as high as 80.5% and 82% even after 50 times of washing, indicating the high antibacterial durability. Our new technology provides a method to prepare super stable antibacterial functional yarn, and is expected to be used to prepare other durable functional textiles.

Funder

Shanghai Sailing Program

International Cooperation Fund of Science and Technology Commission of Shanghai Municipality

National Natural Science Foundation of China

DHU Distinguished Young Professor Program to Prof. Dongxiao Ji

Shanghai Committee of Science and Technology

Fundamental Research Funds for the Central Universities

Chang Jiang Scholars Program and the Innovation Program of Shanghai Municipal Education Commission

Young Elite Scientists Sponsorship Program by CAST to Prof. Liming Wang

DHU Distinguished Young Professor Program to Prof. Liming Wang

Shanghai Pujiang program

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3