Mid-infrared emissivity of nylon, cotton, acrylic, and polyester fabrics as a function of moisture content

Author:

Belliveau Raymond G1,DeJong Stephanie A2,Boltin Nicholas D1ORCID,Lu Zhenyu3,Cassidy Brianna M4,Morgan Stephen L1,Myrick ML1ORCID

Affiliation:

1. Department of Chemistry and Biochemistry, University of South Carolina, USA

2. Sandia National Laboratory, USA

3. Alkermes Massachusetts Facility, USA

4. CDX Analytics, USA

Abstract

The effectiveness of material to emit energy as thermal radiation is important in determining the apparent temperature in infrared thermographic measurements. For this reason, a number of measurements of the thermal emissivity in the mid-infrared thermographic (8–12 µm) region have been reported for fabrics. However, many fabrics adsorb moisture from the air, and condensed water has a relatively high thermal emissivity. In this manuscript, we report measurements of adsorption isotherms and mid-infrared thermal emissivity for nylon, cotton, polyester, and acrylic as a function of their moisture content in weight percent at temperatures just above ambient. We find that the order of water mass percentage gain for the fabrics in high humidity conditions are polyester < acrylic < nylon < cotton. The thermal emissivity is ∼0.88 independent of moisture content for the fabrics polyester, cotton, and nylon, while acrylic shows a pronounced increase in thermal emissivity as moisture content increases, ranging from ɛ ∼ 0.81 at low humidity conditions to ɛ ∼ 0.88 under high humidity conditions. In this work, emissivity measurements are made by imaging through a novel infrared window made from household cling wrap and interpreted with equations that are independent of window transmittance and sample temperature.

Funder

National Institute of Justice

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3