Study on the thermo-physiological comfort properties of cotton/polyester combination yarn-based double-layer knitted fabrics

Author:

Ma Wanwan1ORCID,Cheng Longdi1,Liu Yunying1,Psikuta Agnes2ORCID,Zhang Yimin1

Affiliation:

1. College of Textiles, Donghua University, China

2. Laboratory for Biomimetic Membranes and Textiles, Empa Swiss Federal Laboratories for Materials Science and Technology, Switzerland

Abstract

In this study, a cotton/polyester combination yarn with a hydrophobic–hydrophilic gradient across the yarn cross-section was developed using twinning and twisting technologies, and the hermos-physiological comfort properties of the cotton/polyester combination yarn-based double-layer knitted fabrics, prepared from the cotton/polyester combination yarn together with cotton yarn and polyester filaments, were systematically investigated and compared with the cotton (outer)–polyester filaments (inner) fabric. The results show that the cotton/polyester fabric has a better one-way transfer capacity and drying property due to the hydrophobic–hydrophilic gradient from inside to outside, as well as a lower thermal resistance. The cotton/polyester (outer)–polyester filaments (inner) fabric exhibits a weaker hydrophobic–hydrophilic gradient than the cotton/polyester fabric, offering superior water vapor permeability and dynamic cooling property. Although the cotton (outer)–cotton/polyester (inner) fabric with a hydrophilic gradient shows a higher thermal resistance and a weaker dynamic cooling property, it also has a higher air permeability, thermal conductivity and qmax, and its drying rate is second only to the cotton/polyester fabric. The use of the cotton/polyester combination yarn in the inner layer significantly improves the fabrics’ wettability, wickability, and tactile comfort. Furthermore, the combination yarn-based fabrics also have very good water transfer ability. As a result, the combination yarn can take advantage of both fibers in the preparation of fabrics that meet different comfort requirements.

Funder

the China Scholarship Council

National Key R&D Program of China

the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3