Wearable colorimetric sensing fiber based on polyacrylonitrile with PdO@ZnO hybrids for the application of detecting H2 leakage

Author:

Hwang Sung-Ho1,Kim Young Kwang1ORCID,Jeong Soon Moon1,Choi Changsoon1,Son Ka Young1,Lee Soo-Keun1,Lim Sang Kyoo1ORCID

Affiliation:

1. Division of Energy Technology of the Materials Research Institute, Daegu Gyeongbuk Institute of Science and Technology, Republic of Korea

Abstract

A colorimetric hydrogen sensor has great potential for accurately detecting and monitoring the leakage of hydrogen gas on account of its fast color change in contact with hydrogen gas. However, for the practical application of the sensor, such as in gas detection systems in clothing, the flexibility and stability of the sensor need to be improved. Here, we present a novel method to fabricate a flexible colorimetric hydrogen sensor with the stable embedment of sensing material. To improve the flexibility and stability of the sensor, polyacrylonitrile nanofiber containing palladium oxide and zinc oxide hybrid nanoparticles was prepared by electrospinning. The flexible colorimetric hydrogen sensor can detect 1000 ppm hydrogen gas with excellent selectivity within 2 min. We also suggest film and yarn-type flexible colorimetric hydrogen sensors for industrial and wearable applications. A laminating process was used to prepare the film. In contrast, twisting and polydimethylsiloxane coating were used to prepare the yarn-type flexible colorimetric hydrogen sensor. Compared with a flexible colorimetric hydrogen-sensing nanofiber, the film and yarn show identical sensitivity for detecting a hydrogen leakage. These applications of hydrogen sensors could be a new insight into the design of a flexible sensor for detecting hydrogen leakage with the naked eye.

Funder

Basic Science Research Program through National Research Foundation of Korea funded by the Ministry of Education

DGIST R&D Program of the Ministry of Science and ICT of Korea

Publisher

SAGE Publications

Subject

Polymers and Plastics,Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3