Waterborne polyurethane containing fluorosilicone coating: to endow leather with enduring hydrophobicity and mechanical properties

Author:

Zhao Wenjing12,Sui Zhihui12ORCID,Zhang Qi1,Sun Lijian1,Hu Fang1,Cao Xiangyu1

Affiliation:

1. School of Light Industry and Textiles, Qiqihar University, China

2. Engineering Research Center for Hemp and Products in Cold Region, Ministry of Education, China

Abstract

Natural leather-based materials possess a combination of air permeability, wear resistance, and plasticity. However, conventional leather products have inherent limitations that make them unsuitable for unconventional applications. Therefore, it is necessary to develop new capabilities in order to overcome these limitations. In this study, we explored the conversion of regular leather into a high-strength product with hydrophobic properties through surface engineering. To achieve this, we synthesized polysiloxane-modified fluorinated waterborne polyurethane emulsions as functional coatings using emulsion polymerization. The structure and properties of the treated leathers were characterized using techniques such as Fourier transform infrared, thermogravimetry, X-ray photoelectron spectroscopy, X-ray diffraction, and scanning electron microscopy. The results demonstrated that the synthesized polysiloxane-modified fluorinated waterborne polyurethane successfully penetrated and combined with the fibers of the leather, resulting in excellent hydrophobicity. The water contact angle increased to 124.3°. Furthermore, the tensile strength and tear strength of unfinished leather are 875 N and 114 N, respectively. The application of waterborne polyurethane-derived functional additives as coatings resulted in a significant increase in tensile and tear strength of the leather by 60 N and 16 N, respectively. In addition, the softness of the leather increased from 7.6 mm to 10.09 mm. Overall, the use of this functional waterborne polyurethane coating will contribute to the diversification of leather applications.

Funder

Heilongjiang Provincial Department of Education for the Basic Research Funds Research Project

Qiqihar University Postgraduate Innovation Research Project

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3