Effects of adipose-derived mesenchymal stem cell conditioned medium on human tenocytes exposed to high glucose

Author:

Trotta Maria Consiglia1,Itro Annalisa2,Lepre Caterina Claudia1,Russo Marina1,Guida Francesca1,Moretti Antimo3,Braile Adriano3,Tarantino Umberto45,D’Amico Michele1,Toro Giuseppe6ORCID

Affiliation:

1. Department of Experimental Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy

2. PhD Course in Translational Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy

3. Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Naples, Italy

4. Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy

5. Caterina ClaudiaLepre is also affiliated to PhD Course in Translational Medicine, University of Campania ‘Luigi Vanvitell’, Naples, Italy

6. Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, Via L. De Crecchio 6, Naples 80138, Italy

Abstract

Introduction: Diabetic tendinopathy is a common invalidating and challenging disease that may be treated using stem cells. However, the effects of adipose-derived mesenchymal stem cell conditioned medium (ASC-CM) in diabetic tendinopathy have never been explored. Objectives: The present study evaluated the effects of ASC-CM on morphology, cell viability, structure, and scratch wound closure of human tenocytes (HTNC) exposed to high glucose (HG). Design: Experimental study. Methods: HTNC were exposed to HG (25 mM) for 7, 14 and 21 days with or without ASC-CM for the last 24 h. CM was collected from 4 × 105 ASCs, centrifuged for 10 min at 200 g and sterilized with 0.22 μm syringe filter. Results: At 7 days, HG-HTNC had decreased cell viability [72 ± 2%, p < 0.01 versus normal glucose (NG)] compared to NG-HTNC (90 ± 5%). A further decrement was detected after 14 and 21 days (60 ± 4% and 60 ± 5%, both, p < 0.01 versus NG and p < 0.01 versus HG7). While NG-HTNC evidenced a normal fibroblast cell-like elongated morphology, HG-HTNC showed increased cell roundness. In contrast, HG-HTNC exposed to ASC-CM showed a significant increase in cell viability, an improved cell morphology and higher scratch wound closure at all HG time points. Moreover, the exposure to ASC-CM significantly increased thrombospondin 1 and transforming growth factor beta 1 (TGF-β1) content in HG-HTNC. The TGF-β1 elevation was paralleled by higher Collagen I and Vascular Endothelial Growth Factor in HG-HTNC. Conclusion: ASC-CM may restore the natural morphology, cell viability and structure of HTNC, promoting their scratch wound closure through TGF-β1 increase.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3