Saccades to Explicit and Virtual Features in the Poggendorff Figure Show Perceptual Biases

Author:

Dillenburger Barbara1,Morgan Michael2

Affiliation:

1. Max-Planck Institute for Metabolism Research, Cologne, Germany

2. Division of Optometry and Visual Science, Institute of Health Sciences, City University London, London, UK

Abstract

Human participants made saccadic eye movements to various features in a modified vertical Poggendorff figure, to measure errors in the location of key geometrical features. In one task, subjects ( n = 8) made saccades to the vertex of the oblique T-intersection between a diagonal pointer and a vertical line. Results showed both a small tendency to shift the saccade toward the interior of the angle, and a larger bias in the direction of a shorter saccade path to the landing line. In a different kind of task (visual extrapolation), the same subjects fixated the tip of a 45° pointer and made a saccade to the implicit point of intersection between pointer and a distant vertical line. Results showed large errors in the saccade landing positions and the saccade polar angle, in the direction predicted from the perceptual Poggendorff bias. Further experiments manipulated the position of the fixation point relative to the implicit target, such that the Poggendorff bias would be in the opposite direction from a bias toward taking the shortest path to the landing line. The bias was still significant. We conclude that the Poggendorff bias in eye movements is in part due to the mislocation of visible target features but also to biases in planning a saccade to a virtual target across a gap. The latter kind of error comprises both a tendency to take the shortest path to the landing line, and a perceptual error that overestimates the vector component orthogonal to the gap.

Funder

Wellcome Trust

Publisher

SAGE Publications

Subject

Artificial Intelligence,Sensory Systems,Experimental and Cognitive Psychology,Ophthalmology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3