Development of a Machine Learning Algorithm to Forecast the Likelihood of Postoperative Neurological Complications in Patients With Parotid Tumors

Author:

Li Ruilin1ORCID,Zheng Zhanhang1,Yang Lianzhao1ORCID,Li Shuimei2,Qin Shuhong1,Xu Sujuan2,Wu Chenxingzi1,Wang Wenjuan1

Affiliation:

1. Guangxi University of Chinese Medicine, Nanning, Guangxi, China

2. Guigang City People's Hospital, Guigang, Guangxi, China

Abstract

Objective: The objective of this study was to create and verify a machine learning-driven predictive model to forecast the likelihood of facial nerve impairment in patients with parotid tumors following surgery. Methods: We retrospectively collected data from patients with parotid tumors between 2013 and 2023 to develop a prediction model for postoperative facial nerve dysfunction using 5 ML techniques: Logistic Regression (Logit), Random Forest (RF), XGBoost (XGB), Artificial Neural Network (ANN), and Support Vector Machine (SVM). Predictor variables were screened using binomial-LASSO regression. Results: The study had a total of 403 participants, out of which 56 individuals encountered facial nerve damage after the surgery. By employing binomial-LASSO regression, we have successfully identified 8 crucial predictive variables: tumor kind, tumor pain, surgeon’s experience, tumor volume, basophil percentage, red blood cell count, partial thromboplastin time, and prothrombin time. The models utilizing ANN and Logit achieved higher area under the curve (AUC) values, namely 0.829, which was significantly better than the SVM model that had an AUC of 0.724. There were no noticeable disparities in the AUC values between the ANN and Logit models, as well as between these models and other techniques like RF and XGB. Conclusion: Using machine learning, our prediction model accurately predicts the likelihood that patients with parotid tumors may experience facial nerve damage following surgery. By using this model, doctors can assess patients’ risks more accurately before to surgery, and it may also help optimize postoperative treatment techniques. It is anticipated that this tool would enhance patients’ quality of life and therapeutic outcomes.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3