Smoothed simulated pseudo-maximum likelihood estimation for nonlinear mixed effects models with censored responses

Author:

Song Yue1,Wang Rui2ORCID

Affiliation:

1. Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA

2. Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, USA

Abstract

Nonlinear mixed effects models have been widely applied to analyses of data that arise from biological, agricultural, and environmental sciences. Estimation of and inference on parameters in nonlinear mixed effects models are often based on the specification of a likelihood function. Maximizing this likelihood function can be complicated by the specification of the random effects distribution, especially in the presence of multiple random effects. The implementation of nonlinear mixed effects models can be further complicated by left-censored responses, representing measurements from bioassays where the exact quantification below a certain threshold is not possible. Motivated by the need to characterize the nonlinear human immunodeficiency virus RNA viral load trajectories after the interruption of antiretroviral therapy, we propose a smoothed simulated pseudo-maximum likelihood estimation approach to fit nonlinear mixed effects models in the presence of left-censored observations. We establish the consistency and asymptotic normality of the resulting estimators. We develop testing procedures for the correlation among random effects and for testing the distributional assumptions on random effects against a specific alternative. In contrast to the existing variants of expectation-maximization approaches, the proposed methods offer flexibility in the specification of the random effects distribution and convenience in making inference about higher-order correlation parameters. We evaluate the finite-sample performance of the proposed methods through extensive simulation studies and illustrate them on a combined dataset from six AIDS Clinical Trials Group treatment interruption studies.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3