Modeling and estimating a threshold effect: An application to improving cardiac surgery practices

Author:

Yang Guangyu1,Zhang Baqun2,Haft Jonathan W.3,Hawkins Robert B.3,Sturmer David3,Likosky Donald S.3,Zhang Min4ORCID

Affiliation:

1. Institute of Statistics and Big Data, Renmin University of China, Beijing, China

2. School of Statistics and Management, Shanghai University of Finance and Economics, Shanghai, China

3. Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI, USA

4. Department of Biostatistics, Univeristy of Michigan, Ann Arbor, MI, USA

Abstract

Estimating thresholds when a threshold effect exists has important applications in biomedical research. However, models/methods commonly used in the biomedical literature may lead to a biased estimate. For patients undergoing coronary artery bypass grafting (CABG), it is thought that exposure to low oxygen delivery (DO2) contributes to an increased risk of avoidable acute kidney injury. This research is motivated by estimating the threshold of nadir DO2 for CABG patients to help develop an evidence-based guideline for improving cardiac surgery practices. We review several models (sudden-jump model, broken-stick model, and the constrained broken-stick model) that can be adopted to estimate the threshold and discuss modeling assumptions, scientific plausibility, and implications in estimating the threshold. Under each model, various estimation methods are studied and compared. In particular, under a constrained broken-stick model, a modified two-step Newton–Raphson algorithm is introduced. Through comprehensive simulation studies and an application to data on CABG patients from the University of Michigan, we show that the constrained broken-stick model is flexible, more robust, and able to incorporate scientific knowledge to improve efficiency. The two-step Newton–Raphson algorithm has good computational performances relative to existing methods.

Publisher

SAGE Publications

Subject

Health Information Management,Statistics and Probability,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3