The Epigenetics of Epilepsy and Its Progression

Author:

Hauser Rebecca M.1,Henshall David C.2,Lubin Farah D.1

Affiliation:

1. Evelyn F. McKnight Brain Institute, Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA

2. Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland

Abstract

Epilepsy is a common and devastating neurological disorder characterized by recurrent and unprovoked spontaneous seizures. One leading hypothesis for the development and progression of epilepsy is that large-scale changes in gene transcription and protein expression contribute to aberrant network restructuring and hyperexcitability, resulting in the genesis of repeated seizures. Current research shows that epigenetic mechanisms, including posttranslational alterations to the proteins around which DNA is coiled, chemical modifications to DNA, and the activity of various noncoding RNA molecules exert important influences on these gene networks in experimental epilepsy. Key findings from animal models have been replicated in humans using brain tissue obtained from living patients at the time of neurosurgical resection for pharmacoresistant epilepsy. These findings have spurred efforts to target epigenetic processes to disrupt or modify epilepsy in experimental models with varying degrees of success. In this review, we will (1) summarize the epigenetic mechanisms implicated in epileptogenesis and epilepsy, (2) explore the influence of metabolic factors on epigenetic mechanisms, and (3) assess the potential of using epigenetic markers to support diagnosis and prognosis. Translation of these findings may guide the development of molecular biomarkers and novel therapeutics for prevention or modification of epileptic disorders.

Funder

National Science Foundation

the European Union Seventh Framework Programme

Science Foundation Ireland

National Institute of Neurological Disorders and Stroke

The Health Research Board and Medical Research Charities Group

Publisher

SAGE Publications

Subject

Neurology (clinical),General Neuroscience

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3