Astrocytes and Synaptic Plasticity

Author:

Barker Alison J.1,Ullian Erik M.2

Affiliation:

1. Department of Ophthalmology, University of California, San Francisco, San Francisco, California

2. Department of Physiology, University of California, San Francisco, San Francisco, California,

Abstract

Synaptic plasticity, the ability of neurons to change the number and strength of their synapses, has long been considered the sole province of the neuron. Yet neurons do not function in isolation; they are a part of elaborate glial networks where they are intimately associated with astrocytes. Astrocytes make extensive contacts with synaptic sites where they release soluble factors that can increase synapse number, provide synaptic insulation restricting the spread of neurotransmitter to neighboring synapses, and release neuroactive compounds, gliotransmitters, that can directly influence synaptic transmission. During periods of synaptogenesis, astrocyte processes are highly mobile and may contribute to the stabilization of new synapses. As our understanding of the extent of their influence at the synapse unfolds, it is clear that astrocytes are well poised to modulate multiple aspects of synaptic plasticity.

Publisher

SAGE Publications

Subject

Clinical Neurology,General Neuroscience

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3