Numerical study on the interaction between the internal and surface waves by a 2D hydrofoil moving in two-layer stratified fluid

Author:

Kim Kwan-Woo1,Lee Ju-Han1,Paik Kwang-Jun1ORCID,Koo Weoncheol1,Kim Young-Gyu2

Affiliation:

1. Department of Naval Architecture and Ocean Engineering, Inha University, Incheon, Republic of Korea

2. Agency for Defense Development, Changwon, Republic of Korea

Abstract

The water temperature in the ocean varies according to its depth and generates a thermocline layer. An internal wave can be excited by an object moving near the thermocline layer because the density changes owing to the water temperature. The internal wave propagates and interacts with the surface wave. This study aims to investigate the internal wave propagation in a two-layer stratified flow, generated by 2D hydrofoil (NACA0012) using a RANS based CFD model. Eulerian multiphase methods were used for the modeling of the two-layer stratified flow; Volume of Fluid (VOF) model and mixture model. A two-layer stratified fluid consisting of air(ρair)-water1(ρw1)-water2(ρw2) is considered instead of the thermocline layer to simplify the numerical simulations. The generation and propagation of the internal wave were investigated, with different configurations of the speed and submergence depth of the hydrofoil. The result suggested that the VOF model shows better agreement with the experimental data compared to the mixture model.

Funder

Agency for Defense Development

Competency Development Program

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3