Numerical simulation of the mooring capacity comparison of the subsea suspended manifold with two mooring schemes

Author:

Xu Ning1ORCID,Zhao Honglin1,Li Yufang2,Wang Yingying3,Zhang Shimin1

Affiliation:

1. College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing, China

2. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, China

3. College of Safety and Ocean Engineering, China University of Petroleum, Beijing, China

Abstract

The next-generation underwater production system (NUPS) is based on the suspension cluster manifold (SCM) as a new conceptual scheme. SCM mooring stability is essential for establishing NUPS. Therefore, comparing the SCM mooring stability in different mooring systems is vital for evaluating system adaptability. This paper detailed two mooring schemes designed for the SCM, including the steel catenary riser (SCR) mooring system and the new steep wave (NSWR) mooring system. OrcaFlex software was used to establish the mooring system model, analyzing the static motion response of the SCM under the current and fluid density. Furthermore, the mooring system adaptability in the cluster wellhead layout was also evaluated and compared. The results showed that the maximum offset of the SCM with the SCR mooring system was within 2 m under the current, while the deflection of the SCM with the NSWR mooring system was within 1.5° in extreme fluid densities. Furthermore, the SCM with the SCR mooring system displayed superior station-keeping capability in the current, while the NSWR mooring system exhibited better stability when transporting extreme fluid densities and was more adaptable in cluster wellhead layouts.

Funder

Research on the Fluid Flow and the Design Method of Multi-functional Subsea Pipeline Robot

Ministry of Science and Technology of the People’s Republic of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3