Detection of ADHD From EEG Signals Using Different Entropy Measures and ANN

Author:

Catherine Joy R.1,Thomas George S.2ORCID,Albert Rajan A.3,Subathra M.S.P.3

Affiliation:

1. Department of Electronics and Communication Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India

2. Department of Biomedical Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India

3. Department of Electrical and Electronics Engineering, Karunya Institute of Technology and Sciences, Coimbatore, India

Abstract

Attention deficit hyperactivity disorder (ADHD) is a prevalent behavioral, cognitive, neurodevelopmental pediatric disorder. Clinical evaluations, symptom surveys, and neuropsychological assessments are some of the ADHD assessment methods, which are time-consuming processes and have a certain degree of uncertainty. This research investigates an efficient computer-aided technological solution for detecting ADHD from the acquired electroencephalography (EEG) signals based on different nonlinear entropy estimators and an artificial neural network classifier. Features extracted through fuzzy entropy, log energy entropy, permutation entropy, SURE entropy, and Shannon entropy are analyzed for effective discrimination of ADHD subjects from the control group. The experimented results confirm that the proposed techniques can effectively detect and classify ADHD subjects. The permutation entropy gives the highest classification accuracy of 99.82%, sensitivity of 98.21%, and specificity of 98.82%. Also, the potency of different entropy estimators derived from the t-test reflects that the Shannon entropy has a higher P-value (>.001); therefore, it has a limited scope than other entropy estimators for ADHD diagnosis. Furthermore, the considerable variance found from potential features obtained in the frontal polar (FP) and frontal (F) lobes using different entropy estimators under the eyes-closed condition shows that the signals received in these lobes will have more significance in distinguishing ADHD from normal subjects.

Publisher

SAGE Publications

Subject

Clinical Neurology,Neurology,General Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3