Enhanced biogas production by anaerobic co-digestion from a trinary mix substrate over a binary mix substrate

Author:

Ara Efath1,Sartaj Majid1,Kennedy Kevin1

Affiliation:

1. Civil Engineering, University of Ottawa, Canada

Abstract

The synergetic enhancement of mesophilic anaerobic co-digestion of trinary and binary mix of organic fraction of municipal solid waste (OFMSW) + primary sludge (PS) + thickened waste activated sludge (TWAS) as substrates was investigated through batch biological methane potential (BMP) and semi-continuous flow reactor tests. Cumulative biogas yield (CBY) yield for the binary mix of OFMSW:TWAS was 555, 580, and 660 mL/g volatile solids (VS)added for an OFMSW:TWAS ratio of 25:75, 50:50, and 75:25, respectively, which was 48, 78.5, and 140% higher than the calculated expected biogas (CEB) yield from the corresponding individual substrates. The trinary mixture of OFMSW:TWAS:PS at ratios of 25:37.5:375.5, 50:25:25 and 75:12.5:12.5 was able to produce 680, 710 and 780 mL/g VSadded, respectively, which was 25.5, 62.0 and 135.6% more biogas than the calculated expected biogas yield from the corresponding individual substrates. Cumulative methane yield (CMY) of trinary mixtures was also higher than the corresponding binary mixtures (20, 27, and 12 % increase for OFMSW:TWAS:PS at a ratio of 25:37.5:37.5, 50:25:25, and 75:12.5:12.5 compared to the binary mix of OFMSW:TWAS at a ratio of 25:75, 50:50, and 75:25, respectively). Methane content of the biogas varied from 54 to 57%. The results from semi-continuous flow anaerobic reactors under hydraulic retention times (HRT) of 15, 10 and 7 days supported the results of batch biological methane potential tests. The results were conclusive that enhancement in biogas production was noticeably higher from the co-digestion of trinary mix of organic fraction of municipal solid waste+ thickened waste activated sludge + primary sludge than the binary mix organic fraction of municipal solid waste+thickened waste activated sludge or thickened waste activated sludge+primary sludge with concomitant improvements in VS removal and biodegradability for tri-digestion of organic fraction of municipal solid waste, thickened waste activated sludge and primary sludge.

Publisher

SAGE Publications

Subject

Pollution,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3