Modelling tamping effectiveness for track geometry longitudinal levelling defects

Author:

Rodrigues Pedro1ORCID,Teixeira Paulo F.1ORCID

Affiliation:

1. CERIS, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal

Abstract

The geometric recovery achieved with tamping is affected by several factors, including maintenance history, ballast condition, type of tamping, age and configuration of track components, operational speeds, and human factors. In this paper, data from 2,819 defects of longitudinal levelling are analysed considering 66,892 km of inspections carried out on 19 lines of the Portuguese railway network over 10 years. The influence of infrastructure clusters, defect level, ballast age, degradation rate before tamping, and the still little-studied shape of defects on geometry recovery is firstly investigated by analysing relationships between the raw data (scatterplots). A multiple linear regression model is then developed to predict the defect level after tamping, taking into account both the defect level before tamping and its shape, which is modelled through a proxy parameter. It is concluded that track sections where there are singularities (underpasses, culverts, level crossings, bridges, tunnels and viaducts) usually have much shorter maintenance cycles (median values up to 60% lower). Ballast age and degradation rate before tamping did not prove to have a marked influence on geometry recovery. Although the defect level before tamping is found to be the factor that most conditions geometry recovery, thus corroborating the critical importance of timely intervention, its shape also proves to have a significant influence, giving rise to differences in geometry recovery of up to 20% of the defect level before tamping.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3