Real-scale experiments of resistive heating laminate composite panels for radiant heating in railway vehicles

Author:

Park Juyeop12ORCID,Kang Donghoon1,Koo Bonyong3,Cho Min-Ki1ORCID,Kim Hak-Sung14

Affiliation:

1. Railroad Accident Research Department, Korea Railroad Research Institute, Uiwang, Republic of Korea

2. Department of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea

3. Department of Mechanical Engineering, Kunsan National University, Gunsan, Republic of Korea

4. Institute of Nano Science and Technology, Hanyang University, Seoul, Republic of Korea

Abstract

Railways, as one of the representative mass transit systems, are vulnerable to highly contagious respiratory diseases due to their operation in densely populated environments. Notably, the current convective heating system creates an environment susceptible to virus transmission within railway vehicles. To improve this situation, there have been attempts to introduce radiant heating systems to reduce the risk of virus transmission and create a comfortable indoor environment. Previous studies focused on developing radiant heating composite material for railway vehicles by incorporating a carbon fiber heating element within a glass fiber composite to enable heat generation through joule heating. However, this development was limited to the specimen level. In contrast, this study aims to demonstrate their applicability and performance for actual railway vehicle parts at the component level. Specifically, resin flow and manufacturability were analyzed to assess applicability to railway vehicles. Additionally, heating performance and heat flow characteristics were evaluated to determine heating effects. Based on these results, it is anticipated that the application of multifunctional composite materials in the railway industry will improve the vulnerability to winter viruses and indoor environments and expand the utilization of multifunctional composite materials in various fields.

Funder

Korea Railroad Research Institute

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3