Hunting stability and derailment analysis of a car model of a railway vehicle system

Author:

Cheng Y-C1,Hsu C-T1

Affiliation:

1. Department of Mechanical and Automation Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan, Republic of China

Abstract

Using a heuristic linear creep model, this article derives the governing differential equations of motion for a vehicle travelling on curved tracks. The vehicle is modelled by a 27-degrees-of-freedom (27-DOF) car system, with lateral and vertical displacement, roll and yaw angle of each wheelset and the bogie frames, as well as lateral displacement, and roll and yaw angle of the car body taken into consideration. To analyse the respective effects of major system parameters on vehicle dynamics, the 27-DOF system is reduced to a 14-DOF system by excluding designated subsets of the system parameters. The effects of suspension parameters of a vehicle on the critical hunting speeds were evaluated by the 14- and 27-DOF systems. The results obtained in this study, show that the critical hunting speeds derived using the 14-DOF system are generally higher than those obtained using the 27-DOF system. Additionally, the critical hunting speeds derived using the heuristic non-linear creep model are lower than those achieved using the linear creep model. The effects on derailment quotients of vehicle speeds are evaluated using both linear and non-linear creep models with various suspension parameters. Finally, the effects of vehicle speed on the derailment quotient for sharp curves and low vehicle speed are investigated and compared with both linear and non-linear creep models.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3