Influence of the temperature- and frequency-dependent dynamic properties of rail pads on the vibration characteristics of rails at low temperature

Author:

Ping Wang12,Yinling Dou12ORCID,Shaohua Wang12,Feng Wang3,Wei Kai12ORCID

Affiliation:

1. MOE Key Laboratory of High-speed Railway Engineering, Southwest Jiaotong University, Chengdu, China

2. School of Civil Engineering, Southwest Jiaotong University, Chengdu, China

3. Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand

Abstract

The dynamic properties of railway tracks and rail pads are significant for accurately predicting both the wheel–rail system vibration and rolling noise. The effect that the dynamic properties of rail pads have on the dynamic characteristics of railway tracks at extremely low temperatures was not adequately studied in previous research. In order to better predict the attenuation of the rail vibration, the viscoelastic dynamic properties of rail pads varying nonlinearly with temperature and frequency were first tested, in a wide temperature range (−60 ℃ to 20 ℃), and represented by the fractional derivative Zener model. Then, rail vibration and its attenuation characteristics were investigated by accounting for the frequency-dependent, temperature-dependent and frequency- and temperature-dependent properties, respectively. To be more specific, the frequency and amplitude of the rail first-order bending resonance and pinned–pinned resonance, as well as the rail decay rate were analyzed for the three cases. In conclusion, the study shows that the temperature/frequency-dependent properties of the rail pad have a significant effect on the first-order bending resonance of the rail, but no influence on the pinned–pinned resonance frequency. The rail decay rate indicates a clear increasing trend in the entire frequency domain with the decrease of temperature (especially below about −20 ℃). The frequency dependence mainly affects the vibration and its attenuation characteristics of the rail below about 400 Hz, which should not be ignored in the track dynamics modelling. Therefore, when the analyzed environmental temperature is below −20 ℃, the temperature dependence of rail pads should be considered.

Funder

Joint Funds from both the Chinese High-Speed Railway Company and the National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3