An improved damage constitutive model for pre-heated rocks under uniaxial compression considering the initial compaction effect and residual strength

Author:

Hu Xunjian1ORCID,Ma Dongdong2,Xie Ni3,Zhu Qizhi4,Hu Haibo1,Gong Xiaonan1

Affiliation:

1. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou, China

2. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, China

3. Faculty of Engineering, China University of Geosciences (Wuhan), Wuhan, China

4. Geotechnical Research Institute, Hohai University, Nanjing, China

Abstract

Enhancing our understanding of the damage evolution in pre-heated rock is essential for safer design practices. Accordingly, a mechanical damage variable that accurately depicts the initial damage recovery process was proposed. Subsequently, a damage constitutive model is developed based on the generalized equivalent strain principle, enabling the identification of the initial nonlinear characteristics exhibited in the stress-strain curve. By integrating the above constitutive model with a statistical damage model that considers the residual strength based on the Weibull distribution, a comprehensive piecewise damage constitutive model specifically designed for pre-heated rocks was derived. The model consists of eight parameters, which can be directly determined through experimental results or readily obtained by fitting of the stress-strain data. A comparison of experimental data from multiple pre-heated rock types subjected to uniaxial compression is performed to validate the proposed model, revealing a strong agreement between the theoretical and experimental results. The comparison results demonstrate that the proposed model effectively captures the nonlinearity of the stress-strain curve throughout various stages, including the initial compaction, linear elastic, and strain-hardening stages before reaching the peak stress, as well as the subsequent strain-softening and residual stages. Furthermore, the proposed damage constitutive model elucidates the influence of temperature on crucial factors such as the elastic modulus, peak stress, residual strength, and stress-strain curve of pre-heated rocks, thereby enhancing its applicability in the design of deep underground rock projects.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3