Energy based damage model for low-cycle fatigue of ductile materials

Author:

Perović Zoran B1ORCID,Šumarac Dragoslav M23,Ćorić Stanko B1,Knežević Petar M4ORCID,Cao Maosen5,Nurković Ismail2

Affiliation:

1. Faculty of Civil Engineering, University of Belgrade, Belgrade, Serbia

2. Department of Technical Sciences, Civil Engineering, State University of Novi Pazar, Novi Pazar, Serbia

3. College of Civil and Architecture Engineering, Chuzhou University, Chuzhou, China

4. Faculty of Technical Sciences, University of Pristina, Kosovska Mitrovica, Serbia

5. Department of Engineering Mechanics, Hohai University, Nanjing, China

Abstract

A uniaxial material model for fatigue damage accumulation, established on the connection of unit elements, is presented in this paper. Although these units are regarded as micro-elements in the proposed model, they are based on a hysteretic operator that enables calculating hysteretic energy loss as an analytical expression. Further, this unit element represents a mechanical model with elastoplastic damage behavior in function of strain. The second level of modeling is defined by the connection of these units (micro-elements) with different values of total energy dissipated at failure. By changing the distribution of dissipated energy limit, various fatigue damage evolution laws are developed. Calculation of total and hysteretic energy loss in one loading cycle is also affected by fatigue damage as the varying number of unit elements are been eliminated when their maximum dissipation energy is reached. Material parameters for the model were defined based on the experimental monotonic and cyclic stress-strain tests, still, detailed comparison was not performed as the main advantage and aim of the paper was the development of the method for assessment of damage evolution in fatigue analysis. On the other hand, the number of cycles to failure ( Nf) and total heat dissipation are compared in both qualitative and quantitative aspects with experimental results. Finally, based on the proposed model, mean strain and load sequence effect diagrams were constructed. It is shown that the proposed model can provide a reliable estimation of fatigue life in the low-cycle regime of loading. The maximum error for the calculated Nf was 3% for constant strain loading for experiments with strain amplitude less than 5%. In load sequence fatigue life estimation, the proposed model demonstrated good accuracy, with a maximum error of 34%. Further, obtained results were achieved with different types of damage evolution that could be defined for the same material and fatigue life.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3