Field experimental investigation on filling the soda residue soil with liquid soda residue and liquid fly ash

Author:

Bai Xiaoyu12,Ma Jiaxiao1ORCID,Liu Junwei12ORCID,Zhang Mingyi12,Yan Nan12,Wang Yonghong12

Affiliation:

1. Department of Civil Engineering, Qingdao University of Technology, Qingdao, China

2. Cooperative Innovation Center of Engineering Construction and Safety in Shandong Blue Economic Zone, Qingdao University of Technology, Qingdao, China

Abstract

In order to reuse waste soda residue, the feasibility of utilizing liquid soda residue and liquid fly ash to prepare soda residue soil was investigated. The mechanical properties of the soda residue soil were studied and analyzed through laboratory tests and field tests. The raw materials preparation process and liquid-liquid mixing method in the field were determined, and the optimal mixing proportion of the soda residue soil was investigated by compaction test and micro penetration test. And the filling quality of the liquid-liquid mixing and solid-liquid soda residue soil was measured by micro penetration test, light dynamic penetration test, and variable energy dynamic penetration test. The test results showed that the optimal mass ratio of soda residue to fly ash is 7:3. The optimal water content and maximum dry density of the soda residue soil with the optimal mix ratio are 63.5% and 0.88 g/cm3, respectively. After 5 months of natural drying, the soda residue soil filled by liquid soda residue and liquid fly ash has higher strength and better uniformity of hardness. The water content of the soda residue soil is between 160% to 180%, and drainage consolidation is the effective method to reduce the water content and improve the strength of the soda residue soil. Compared with the method of preparing the soda residue soil by solid mixing, the method used in this experiment is simple, efficient and feasible.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3