A coda wave interferometry to characterize and evaluate the powder debonding damage of solid propellant: Experimental investigation and discrete element simulation

Author:

Pan Yu1,Yang Deze1,Qu Wenzhong1,Chu Xihua1ORCID

Affiliation:

1. Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, China

Abstract

The debonding of solid filler powder and binder matrix is the main form of damage for composite solid propellant. This study proposes a coda wave interference (CWI) analysis method to quantitatively characterize and evaluate the internal powder debonding damage of composite solid propellant by experiment and discrete element simulation. In order to verify the validity of numerical simulation, the discrete element method (DEM) samples to simulate the powder debonding damage of solid propellant are established, and the DEM simulation and micro-CT scanning experiment are carried out. The micro-experimental and DEM results prove the efficiency and accuracy of DEM samples in modeling the damage behaviors of solid propellant specimens. Furthermore, in order to quantitatively characterize and evaluate powder debonding damage of solid propellant, using CWI method to analyze the damage states of solid propellants in the experiment and DEM simulation of tension. Two coda evaluation parameters based on different damage states are proposed, and the relationship curves of coda evaluation parameters and tensile strain are obtained. Though the analysis of the curve results of experiment and DEM simulation, the validity of CWI is demonstrated. The coda evaluation parameters can quantitatively identify and judge the accumulation process of initial damage, the appearance of micro holes and the failure point of propellant.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Computational Mechanics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3