A novel approach to evaluating the accessibility of electric vehicle charging infrastructure via dynamic thresholding in machine learning

Author:

Zhang Bailing1ORCID,Kang Jing23ORCID,Feng Tao14

Affiliation:

1. Graduate School of Advanced Science and Engineering, Hiroshima University, Japan

2. Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan

3. School of Social Sciences, Waseda University, Tokyo, Japan

4. Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract

The spatial deployment of urban public electric vehicle charging stations (PEVCSs) plays a pivotal role in the widespread adoption of electric vehicles (EVs). However, with the rapid advancements in EV technology and battery capabilities, substantial improvements in both range and charging efficiency have emerged and are expected to continue experiencing sustained growth. This situation underscores the urgent necessity of establishing dynamic metrics to reconsider the existing static charging infrastructure, aiming to ameliorate the current severe spatial imbalances and supply–demand disparities encountered in the deployment of PEVCSs. In this study, we harnessed and analyzed 84,152 sets of authentic data, fine-tuned through geospatial-aggregation technology, and ensured anonymity. Our findings bridged users’ residential and occupational patterns with their charging propensities. Comparing these with the spatial distribution of current charging stations revealed that Beijing and Shenzhen’s infrastructure aligned with the cities' economic, educational, and residential zones, epitomizing a synergy in provisioning. However, certain areas experienced either a demand–supply imbalance or an oversupply. To address these challenges, we introduced the Charging Access Reachability Index (CARI) using machine learning techniques. This dynamic metric serves as a tool for quantifying the effective coverage range of charging facilities. Its adaptive threshold holds potential as a crucial indicator enabling the dynamic transition towards more efficient and resilient charging infrastructure.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science (JSPS) KAKENHI

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3